
1. Introduction
The paper addresses the analysis of 20-year records of atmospheric carbonyl sulfide (OCS) measurements from 
the National Oceanic and Atmospheric Administration (NOAA) global flask network with Empirical Mode 
Decomposition (EMD, Huang et al., 1998). The EMD separates a given time series in its primary cycles plus a 
trend. The method is non-parametric, and there is no need to specify a trend model as generally done with other 
approaches. EMD has been successfully applied in many fields (e.g., Capparelli et al., 2013; Stallone et al., 2020). 
EMD is more suitable than traditional methods for analyzing nonlinear and nonstationary signals, whose statis-
tical properties (e.g., mean and standard deviation) change over time. However, the straightforward applications 
of the technique could lead to misuse if its known limitations and basic assumptions are not carefully considered. 
EMD still has some open issues about its formal characterization when operating on a broadband signal, such 
as white noise (e.g., Wu & Huang, 2010). Taking advantage of the recent work by Stallone et al. (2020) who 
provided best practices to maximize the quality and meaningfulness of EMD, we have devised a tool and applied 
it to the OCS time series for the analysis of trends, seasonal cycle, and inter-annual variability. The tool is general 
and can be used for the analysis of other atmospheric parameters.

Abstract The Empirical Mode Decomposition (EMD) is a fully non-parametric analysis of frequency 
modes and trends in a given series that is based on the data alone. We have devised an improved strategy based 
on a series of best practices to use EMD successfully in the analysis of the monthly time series of carbonyl 
sulfide (OCS) atmospheric mole fractions measured at NOAA network stations (2000–2020). Long-term 
trends and intra- and inter-annual variability has been assessed. After a phase of generally increasing mole 
fractions up to 2015, with a temporary decline around 2009, we found that the OCS atmospheric mole fraction 
subsequently decreased at all stations, reflecting a recent imbalance in its total sources and losses. Our analysis 
has revealed a characteristic time scale for variation of 8–10 years. The variance associated with this long-term 
behavior ranges from 𝐴𝐴 ∼ 15% to 40% of the total strength of the signal, depending on location. Apart from this 
complex long-term behavior, the OCS time series show a strong annual cycle, which primarily results from the 
well-known OCS uptake by vegetation. In addition, we have also found one more frequency of minor variance 
intensity in the measured mole fraction time-history, which corresponds to periods in the range of 2–3 years. 
This inter-annual variability of OCS may be linked to the Quasi-Biennial Oscillation.

Plain Language Summary The Empirical Mode Decomposition has arisen as a new paradigm for 
the processing and analysis of time series. The tool has been applied to multi-year mole fraction measurements 
of an atmospheric gas, carbonyl sulfide (OCS), which has important implications for understanding and 
analyzing the carbon cycle. OCS is the most abundant sulfur-containing trace gas in the atmosphere and has 
recently emerged as a putative proxy for the terrestrial photosynthetic uptake of CO2 because OCS and CO2 
have the same diffusion pathway into leaves. The study has analyzed OCS at 14 cooperative stations, which are 
distributed all around the world. We have found a characteristic time scale for 8–10 years variation. Apart from 
this complex long-term behavior, the OCS time series show a robust yearly cycle, primarily from OCS uptake 
by vegetation. Finally, we have also found one more frequency, which corresponds to periods in the range of 
2–3 years. This inter-annual variability of OCS may be linked to the Quasi-Biennial Oscillation, which is an 
almost periodic oscillation of the winds of the equatorial stratosphere.

SERIO ET AL.

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Trend and Multi-Frequency Analysis Through Empirical 
Mode Decomposition: An Application to a 20-Year Record of 
Atmospheric Carbonyl Sulfide Measurements
C. Serio1  , S. A. Montzka2  , G. Masiello1  , and V. Carbone3

1Scuola di Ingegneria, Università degli Studi della Basilicata, Potenza, Italy, 2NOAA Global Monitoring Laboratory, Boulder, 
CO, USA, 3Dipartimento di Fisica, Università della Calabria, Rende, Italy

Key Points:
•  Atmospheric carbonyl sulfide has 

decreased at NOAA network stations 
in recent years

•  Time Series Analysis and trend 
identification

•  Empirical Mode Decomposition 
identified many characteristic 
frequencies of variability, some 
compatible with Quasi Biennal 
Oscillation

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
C. Serio,
carmine.serio@unibas.it

Citation:
Serio, C., Montzka, S. A., Masiello, 
G., & Carbone, V. (2023). Trend and 
multi-frequency analysis through 
Empirical Mode Decomposition: 
An application to a 20-year 
record of atmospheric carbonyl 
sulfide measurements. Journal of 
Geophysical Research: Atmospheres, 
128, e2022JD038207. https://doi.
org/10.1029/2022JD038207

Received 22 NOV 2022
Accepted 8 JAN 2023

Author Contributions:
Conceptualization: C. Serio
Data curation: S. A. Montzka
Formal analysis: S. A. Montzka, V. 
Carbone
Funding acquisition: C. Serio
Investigation: G. Masiello
Methodology: C. Serio, V. Carbone
Resources: G. Masiello
Software: C. Serio, G. Masiello, V. 
Carbone
Supervision: S. A. Montzka
Validation: C. Serio
Visualization: G. Masiello
Writing – original draft: C. Serio

10.1029/2022JD038207
RESEARCH ARTICLE

1 of 18

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5931-7681
https://orcid.org/0000-0002-9396-0400
https://orcid.org/0000-0002-7986-8296
https://doi.org/10.1029/2022JD038207
https://doi.org/10.1029/2022JD038207
https://doi.org/10.1029/2022JD038207
https://doi.org/10.1029/2022JD038207
https://doi.org/10.1029/2022JD038207


Journal of Geophysical Research: Atmospheres

SERIO ET AL.

10.1029/2022JD038207

2 of 18

The importance of OCS in the study of terrestrial vegetative ecosystems has clearly emerged in recent studies 
(Campbell et al., 2008; Maseyk et al., 2014; Montzka et al., 2007). OCS is the most abundant sulfur-containing 
trace gas in the atmosphere and accounts for a significant part of sulfur in the stratospheric aerosol (Brühl 
et al., 2012). Essential sources of OCS are natural; oceans and soils play a dominant role with a more negli-
gible contribution from volcanic activity (Whelan et al., 2018). The ocean is the main natural source of OCS, 
and it has been estimated that the oxidation of dimethyl sulfide (DMS) emitted from the sea surface accounts 
for 8%–20% of the global OCS source (Jernigan et al., 2022). In addition to DMS, atmospheric CS2 oxidation 
represents an important anthropogenic source of OCS (c.a. 30% Chin & Davis, 1993). Otherwise, anthropogenic 
sources have been recognized as secondary contributors: biomass burning and industrial activities (e.g., Whelan 
et al., 2018). The main sink of OCS has been identified as vegetation uptake, whose magnitude is also influenced 
by seasonal trends in terrestrial vegetative photosynthesis. Conversely, in the stratosphere, the photochemical loss 
is the prominent removal process, but at a substantially slower rate than vegetative uptake (Kettle, 2002; Whelan 
et al., 2018).

Moreover, OCS has emerged as a putative proxy for the terrestrial photosynthetic uptake of CO2 because OCS and 
CO2 have the same diffusion pathway into leaves (e.g., Notni et al., 2007; Protoschill-Krebs & Kesselmeier, 1992; 
Schenk et al., 2004), and OCS hydration reaction in this process is irreversible. In addition (Montzka et al., 2007) 
and more recent works (Berry et al., 2013; Campbell et al., 2015) have shown that OCS holds great promise for 
studies of carbon cycle processes because it is an atmospheric tracer of photosynthetic Gross Primary Production 
(GPP). According to Berry et al. (2013), Campbell et al. (2015), and Montzka et al. (2007), the uptake of OCS 
from the atmosphere is dominated by carbonic anhydrase (CA), an enzyme abundant in leaves that also catalyzes 
CO2 hydration during photosynthesis. However, as a continuation of previous studies, it has been shown by Ogée 
et al. (2016) that soils can also effectively exchange OCS with the atmosphere, which can complicate the retrieval 
of GPP from atmospheric budgets for some regions and scales. Some agricultural fields can take up large amounts 
of OCS from the atmosphere as soil microorganisms contain CA. OCS emissions from soils have been reported 
in agricultural fields or anoxic soils (Ogée et al., 2016).

Apart from seasonal variations, the OCS atmospheric mole fraction had remained relatively stable, for example, 
within 7% (Montzka et al., 2007) for the period 2000–2005, when OCS routinely began measured at most of 
the 18 NOAA stations and aircraft profiling sites. Ice core and firm air measurements (e.g., Aydin et al., 2020) 
and references therein, have been used to reconstruct atmospheric carbonyl sulfide's preindustrial and industrial 
history. The more recent atmospheric OCS abundance surveys use a panoply of complementary ground-based, 
airborne, and satellite observations (e.g., Camy-Peyret et al., 2017; Krysztofiak et al., 2015; Lejeune et al., 2017; 
Montzka et al., 2007).

Almost all analyses of historical and contemporary data sets (Campbell et al., 2017) have been interpreted with 
models that simulate changes in OCS concentration according to changes in the global budget of natural and 
anthropogenic sources (from oceans and soils, from industry and biomass burning, respectively), and biogenic 
sinks (from plant photosynthesis and soils) as reviewed by Whelan et al. (2018). Although anthropogenic emis-
sions have exerted a dominant influence in driving atmospheric abundance changes since the 19 th century (Aydin 
et al., 2020; Montzka et al., 2004), various studies (e.g., Aydin et al., 2020; Campbell et al., 2015) found that 
long-term changes in the atmospheric OCS were also influenced by considerable growth in plant photosynthesis 
during the twentieth century. However, these analyses did not encompass the most recent trends in atmospheric 
OCS, for example, since 2014–2015, which is done in the current study and by other recent studies (Hannigan 
et al., 2022). Hannigan et al. (2022) analyzed OCS observations, recorded with solar absorption FTIR remote 
sensing, from 22 globally distributed NDAAC (Network for the Detection of Atmospheric Composition) stations 
between 1986 and 2020. In this respect, our study complements the analyses by Kremser et al. (2015), Lejeune 
et al. (2017), and Hannigan et al. (2022) that are based on solar absorption FTIR remote sensing, because ours 
stems from an analysis of in situ near-surface flask measurements and therefore allows us to corroborate findings 
regarding the long-term tropospheric variability of OCS with an independent data set.

Using EMD, this study analyzes OCS measurements from the NOAA's global flask network, whose observing 
stations are spread around the globe but are more numerous in the North Hemisphere (NH), where anthropo-
genic sources are localized. A qualitative inspection of these data shows that atmospheric OCS mole fractions 
have entered a decline phase at all stations in recent years (through 2020). The quantitative EMD analysis will 
show that a long-term behavior with a characteristic variability time scale of ∼8–10 years characterizes OCS 
time series from all sites analyzed in this study. In addition, the analysis will also show cyclic behaviors with 
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annual and inter-annual scales of variability over-imposed on this trend, which seem to change with time. EMD 
is better suited than the usual Fourier analysis to study processes whose characteristic time-space scales of varia-
bility change with time. To exemplify this is the case of quasi-periodic signals, which encompass critical atmos-
pheric processes such as El-Nino and the Quasi-Biennial Oscillation (QBO) (e.g., see Baldwin et al., 2001; Sun 
et al., 2018).

The paper is organized as follows. First, Section 2 describes data and methods. Then, Section 3 is devoted to 
presenting and discussing results. Finally, conclusions are presented in Section 4.

2. Data and Methods
2.1. Data

For many years, OCS measurements from flasks have been obtained at approximately weekly intervals at 14 
NOAA and cooperative stations (Montzka et al., 2007). The sampling process involves simultaneously pressur-
izing air into a pair of stainless steel or glass flasks that are subsequently shipped to the Boulder laboratory for 
analysis. Standards are prepared in-house at the NOAA laboratory. For more details, see Montzka et al. (2007). 
Data used in this analysis are posted and regularly updated at the NOAA website (e.g., see Global Monitoring 
Laboratory, 2022). The precision of each sampling event is derived by computing the standard deviation 𝐴𝐴 𝐴𝐴𝑑𝑑 of the 
mole fraction measured in each of the two simultaneously filled flasks (flask pair difference). An analysis of these 
standard deviations by sites shows precision in the range of 1.5–2 ppt (1σ). The average 𝐴𝐴 𝜎𝜎𝑑𝑑 of 𝐴𝐴 𝐴𝐴𝑑𝑑 over the whole 
ensemble of flask pairs collected during 2000–2020 is given in Table 1 for each station. However, we stress that 
the instrument error is only one piece of the expected variability of the data. An important role is also played by 
atmospheric variability. The assessment of this component has been performed by computing the standard devia-
tion 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑 of the flask pairs within each month. We note that while 𝐴𝐴 𝐴𝐴𝑑𝑑 is computed on the single pair, 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑 considers 
all of the sampling events in a month (typically a flask pair per week for a total of 4 per month). The average 𝐴𝐴 𝜎𝜎𝑑𝑑𝑑𝑑 
of 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑 over the whole ensemble of samples is given in Table 1 for each station. A detailed account of the compu-
tation of both 𝐴𝐴 𝐴𝐴𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑 can be found in the supplemental materials.

For the present analysis, we consider monthly mean mole fractions measured for OCS at these stations, and the 
data span different periods according to the station. For example, the longest OCS time series in the NOAA data 

Table 1 
Locations Where OCS Mole Fractions Are Regularly Measured From Flask Samples Have Been Analyzed in This Study

Station Code Lat (°N) Lon (°W) Elev (m) Time interval endpoints𝐴𝐴 𝑋𝑋 (ppt)𝐴𝐴 𝐴𝐴𝑋𝑋 (ppt)𝐴𝐴 𝜎𝜎𝑑𝑑 (ppt)𝐴𝐴 𝜎𝜎𝑑𝑑𝑑𝑑 (ppt)
% missing 

data

Alert, Nunavut, Canada ALT 82.4508 62.5072 185 May 2000–October 2020 453.8 39.64 2.21 13.0 12.60

Point Barrow, USA BRW 71.3230 156.6114 11 March 2000–December 2020 456.5 40.87 1.68 12.2 2.40

Cape Grim, Tasmania CGO −40.683 144.6900 94 February 2000–December 2020 490.0 14.76 1.95 4.4 3.60

Harvard Forest, USA HFM 42.5378 72.1714 340 March 2000–December 2020 441.2 49.53 1.72 16.4 2.40

Cape Kumukahi, USA KUM 19.7371 155.0116 0.30 March 2000–December 2020 504.8 22.48 1.69 11.2 0.80

Park Falls, USA LEF 45.9451 90.2732 472 May 2000–December 2020 445.4 44.77 1.60 18.3 2.01

Mace Head, Ireland MHD 53.3260 9.899 5.00 May 2001–December 2020 479.6 33.35 1.63 9.8 7.60

Mauna Loa, USA MLO 19.5362 155.5763 3,397 March 2000–December 2020 503.8 17.90 1.67 8.8 0.40

Niwot Ridge, USA NWR 40.0531 105.586 3,523 March 2000–December 2020 498.0 19.91 1.95 10.9 3.20

Palmer Station, Antarctica PSA −64.774 64.0527 10 May 2000–December 2020 502.8 20.03 1.91 4.4 14.50

Tutuila, American Samoa SMO −14.247 170.564 42 March 2000–December 2020 501.9 12.85 2.13 8.7 2.80

South Pole, Antarctica SPO −89.98 24.8 2,810 May 2000–December 2020 490.7 14.69 1.50 3.6 11.29

Summit, Greenland SUM 72.5962 38.422 3,209 June 2004–December 2020 476.7 34.19 1.34 9.6 5.03

Trinidad Head, USA THD 41.0541 124.151 107 April 2002–December 2020 467.4 41.40 1.45 32.5 0.44

Note. The table also gives the values of 𝐴𝐴 𝑋𝑋 , 𝐴𝐴 𝐴𝐴𝑋𝑋 , 𝐴𝐴 𝜎𝜎𝑑𝑑 , and 𝐴𝐴 𝜎𝜎𝑑𝑑𝑑𝑑 and the percentage of missing data, as monthly means, for each time series (see text for definitions of these 
terms). These gaps represent months without any measurements, and they can result from a lack of availability of flasks at a site or larger-than-acceptable differences 
in simultaneously filled flasks.
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extends from March 2000 to December 2020. We also stress that instrument 
noise and atmospheric variability are both parts of any estimate of a monthly 
mean. Table 1 shows that the dominant player affecting the uncertainty on a 
monthly average is atmospheric variability.

The monthly mean time series at each site can have occasional missing data 
(see also the last column in Table 1); when needed, gaps in the OCS meas-
urement records have been filled by cubic spline interpolation. An example 
is shown in Figure 2. Because flasks are not sampled concurrently at all sites 
each week, this analysis is performed on monthly means that are derived 
from the simple average of all flask pair sampling during each month. We 
also note that the uneven sample frequency, within each month, at the same 
station adds a sampling noise, which the EMD methodology is capable of 
filtering out, as will be shown further in the paper.

The monthly mean mole fraction time series will be referred to as 𝐴𝐴 𝐴𝐴(𝑡𝑡), 
with 𝐴𝐴 𝐴𝐴  the time in months. Because the series 𝐴𝐴 𝐴𝐴 is sampled at discrete time 

𝐴𝐴 𝐴𝐴 = 𝑗𝑗∆𝐴𝐴𝑡 𝑗𝑗 = 1𝑡 . . . 𝑡 𝑁𝑁 , with 𝐴𝐴 𝐴𝐴 representing the total number of discrete meas-
urements, we have that the whole time span of the series is 𝐴𝐴 𝐴𝐴∆𝑡𝑡 . In our case, 

𝐴𝐴 ∆𝑡𝑡 = 1 month. Furthermore, to simplify notation, hereafter, we will write 𝐴𝐴 𝐴𝐴 
for 𝐴𝐴 𝐴𝐴∆𝑡𝑡 and 𝐴𝐴 𝐴𝐴 for 𝐴𝐴 𝐴𝐴∆𝑡𝑡 . With this in mind, the overall average of the series 
and standard deviation will be denoted with 𝐴𝐴 𝑋𝑋 and 𝐴𝐴 𝐴𝐴𝑋𝑋 , respectively. They are 
computed as usual,

𝑋𝑋 =

1

𝑁𝑁

𝑁𝑁
∑

𝑗𝑗=1

𝑋𝑋(𝑗𝑗); 𝜎𝜎
2

𝑋𝑋
=

1

𝑁𝑁 − 1

𝑁𝑁
∑

𝑖𝑖=1

(

𝑋𝑋(𝑗𝑗) −𝑋𝑋

)

2

 (1)

Table 1 shows the values of 𝐴𝐴 𝑋𝑋 , 𝐴𝐴 𝐴𝐴𝑋𝑋 , 𝐴𝐴 𝜎𝜎𝑑𝑑 and 𝐴𝐴 𝜎𝜎𝑑𝑑𝑑𝑑 , and summarizes the basic information about the 14 stations and 
the existing NOAA data records, whereas Figure 1 shows the position of the flask collection stations around the 
globe.

2.2. Methods

The long-term behaviors or trends in data are identified through the EMD technique, developed to process nonlin-
ear and nonstationary data (Huang et al., 1998). EMD decomposes a time series into a finite number of intrinsic 

Figure 1. Location of the 14 NOAA stations considered in this work.

Figure 2. Example of a monthly OCS time series showing the gap-filling with cubic spline interpolation. The case shown in 
the figure refers to the HFM station.
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mode functions (IMFs) and a residual by using an adaptive basis derived from the time series through a so-called 
“sifting” process, namely,

𝑋𝑋(𝑡𝑡) =

𝑚𝑚
∑

𝑗𝑗=1

𝑐𝑐𝑗𝑗(𝑡𝑡) + 𝑟𝑟(𝑡𝑡) (2)

where 𝐴𝐴 𝐴𝐴  is the time, m the number of modes, and 𝐴𝐴 𝐴𝐴(𝑡𝑡) denotes a generic time series; 𝐴𝐴 𝐴𝐴𝑗𝑗 is 𝐴𝐴 𝐴𝐴 -th IMF, and finally, 
𝐴𝐴 𝐴𝐴  is the residual, which can be either the mean trend or a constant. Hereafter, the characteristic frequency of the 

mode, 𝐴𝐴 𝐴𝐴𝑗𝑗 will be denoted with 𝐴𝐴 𝐴𝐴𝑗𝑗. Because the mode can have a frequency depending on time, 𝐴𝐴 𝐴𝐴𝑗𝑗 has to be intended 
as the average or peak frequency as displayed by a usual variance density spectrum analysis.

In conventional trend analysis, it is often assumed, for example, that the trend is linear, and therefore, it can 
be extracted with formal regression analysis (e.g., Gardiner et  al.,  2008; Lejeune et  al.,  2017). Furthermore, 
in non-parametric methods, the trend is analyzed through digital filtering techniques, for example, the Fourier 
transform and low-pass filters, to smooth the selected data and separate the low-frequency components from the 
seasonal cycle (e.g., Thoning et al., 1989).

In the present analysis, the trend is defined by considering all the components of the signal which show frequency 
modes lower than a given threshold frequency 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 ; in this study, the default value is 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 = 3∕𝑁𝑁 , that is, the 
frequency corresponding to a period equal to 𝐴𝐴 𝐴𝐴∕3 . Because in our analysis, the OCS time series is 17–20 years 
long, 𝐴𝐴 𝐴𝐴∕3 yields approximately 5–7 years. The threshold has been selected by trial and error and has been checked 
to provide a consistent analysis for the various stations. Also, OCS has a tropospheric lifetime of ∼1.5–3 years 
(e.g., Montzka et al., 2007), therefore frequencies lower than 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 characterizes long-term trends with timescales 
longer than the atmospheric lifetime of OCS.

With this in mind, the trend, 𝐴𝐴 𝐴𝐴  is defined according to,

𝜏𝜏(𝑡𝑡) =

𝑚𝑚
∑

𝑗𝑗=𝑙𝑙

𝑐𝑐𝑗𝑗(𝑡𝑡) + 𝑟𝑟(𝑡𝑡) (3)

with 𝐴𝐴 𝐴𝐴𝑚𝑚 < ⋯ . < 𝐴𝐴𝑙𝑙 ≤ 𝐴𝐴𝑡𝑡𝑡 . Again, this definition is consistent with the idea that the trend has to capture the 
low-frequency variability of the signal.

As already said, the characteristic frequency of a given mode, 𝐴𝐴 𝐴𝐴𝑗𝑗(𝑡𝑡) can be identified with the usual computation 
of the classical Fourier variance spectrum analysis or Power Density Function (PDF). The frequency components 
within each IMF can be analyzed through the Huang-Hilbert transform (Huang et al., 1998). The Huang-Hilbert 
Transform (hht) is appropriate for nonstationary, nonlinear processes where the frequency modulation of the 
signal can change with time. The usual Fourier analysis is inadequate for these processes because it requires a 
representation of the signal with infinite waves of constant amplitudes and frequencies, and in real atmospheric 
data, these terms may not be constant. However, for atmospheric signals of OCS, which are strongly driven by 
the seasonal cycle, if we are interested in determining the dominant frequency of each mode, we can resort to the 
classical Power Density Function (PDF) analysis. For the sake of brevity and to focus more on the geophysical 
interpretation of results, the use of hht is exemplified in the supplemental materials (e.g., see Figures S32 and 
S33 in Supporting Information S1).

This work uses the EMD algorithm included in Matlab distribution 2020b, which implements all prescriptions 
and stopping criteria, as suggested by Wang et al. (2010), to avoid the decomposition to run endlessly toward the 
limit with infinite iterations of sifting (e.g., Wu & Huang, 2010). However, using the algorithm without careful 
consideration is not recommended. Even adding this stopping criteria, there is no way to prevent the code from 
decomposing part of the trend in the lower frequency modes. Therefore there are at least three aspects that need 
to be carefully addressed when using the Matlab software package: (a) how to fix the number of modes, 𝐴𝐴 𝐴𝐴 ; (b) 
how to prevent mode splitting and mode mixing; (c) how to handle problems with the boundaries or end effects 
because of the finiteness of the series.

For issue (a), we limit the number of modes to 𝐴𝐴 𝐴𝐴 = 4 , which is based on physical insights. We know that the 
observations are affected by sampling, instrumental, and atmospheric noise; therefore, the first mode will fit the 
high oscillatory component of the noise in monthly means. The second IMF or mode is expected to fit the annual 
cycle. The third is devoted to representing any inter-annual variability in the data series. Finally, the fourth and 
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last mode is to model possible lower frequency oscillations and long-term trend structures. For this reason, by 
default, we have the threshold criterion 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 = 3∕𝑁𝑁 in defining the trend: everything with frequency lower than 

𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 = 3∕𝑁𝑁 is moved to the trend. The threshold 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 can be changed if we are interested in looking at EMD recon-
struction of the signal, which includes specific frequencies.

For issue (b), we use the Ensemble Empirical Mode Decomposition (EEMD, e.g., Wu & Huang, 2009) strategy 
of adding noise to the observations. For a given sample of observations, 𝐴𝐴 𝐴𝐴(𝑗𝑗), 𝑗𝑗 = 1, . . . , 𝑁𝑁 we build up the noise 
sample 𝐴𝐴 �̃�𝑋(𝑗𝑗) = 𝑋𝑋(𝑗𝑗) +𝑤𝑤(𝑗𝑗) , with 𝐴𝐴 𝐴𝐴 a Gaussian noise term with zero mean and standard deviation, 𝐴𝐴 𝐴𝐴𝑤𝑤 . 𝐴𝐴 �̃�𝑋(𝑗𝑗) is 
EMD decomposed, and the operation is repeated 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 time. Finally, the four IMF and the residual are taken 
by considering the average over the corresponding 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 . However, before performing EMD on 𝐴𝐴 �̃�𝑋(𝑗𝑗) , we first 
extend the signal to account for possible boundary effects.

To this end,—issue (c), we use the strategy proposed by Stallone et al. (2020). The series 𝐴𝐴 �̃�𝑋(𝑗𝑗) is symmetrically 
extended outside the boundaries, producing, on both sides, an extended signal 𝐴𝐴 �̃�𝑋𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) which is, on each side, N 
times longer than the original one. Then, 𝐴𝐴 �̃�𝑋𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) is multiplied by a function 𝐴𝐴 𝐴𝐴(𝑗𝑗) , which is one for the original 
signal 𝐴𝐴 �̃�𝑋(𝑗𝑗) and tends smoothly to zero as we approach the two left and right ends of the extended signal. In this 
way, the signal 𝐴𝐴 �̃�𝑋𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) is periodic at the boundaries.

For completeness, the last word has to be said for 𝐴𝐴 𝐴𝐴𝑤𝑤 . According to Wu and Huang (2009), 𝐴𝐴 𝐴𝐴(𝑗𝑗) needs to be added 
to the original signal to avoid the phenomenon of mode-splitting. The only important prescription is that the noise 
has to be white and stationary: zero mean and constant standard deviation. The value of 𝐴𝐴 𝐴𝐴𝑤𝑤 has to be set by trial 
and error. By default, we use the value suggested by Wu and Huang (2009), that is, 𝐴𝐴 𝐴𝐴𝑤𝑤 = 𝑝𝑝 × 𝐴𝐴𝑋𝑋 with 𝐴𝐴 𝐴𝐴 = 0.1 (see 
Table 1 for the values of 𝐴𝐴 𝐴𝐴𝑋𝑋 by site). The fact that 𝐴𝐴 𝐴𝐴𝑤𝑤 is prescribed to be a fraction of 𝐴𝐴 𝐴𝐴𝑋𝑋 just responds to the need 
to add a random component with a strength equal to a fraction of the total variability of the data. We also note 
that it is unlike that the same value of 𝐴𝐴 𝐴𝐴 , is good for all series. The fraction 𝐴𝐴 𝐴𝐴 = 0.1 is just to get started. A suitable 

𝐴𝐴 𝐴𝐴 can only be found by running EMD with diverse 𝐴𝐴 𝐴𝐴 until the problem of mode-mixing is solved. This aspect is 
illustrated at a better length in the supplemental materials (e.g., see Figures S1–S3 and Table S1 in Supporting 
Information S1).

For the reader's benefit, we summarize the algorithm we devised to apply EMD to the OCS time series.

1.  Set 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 (default value, 𝐴𝐴 3∕𝑁𝑁 ) and 𝐴𝐴 𝐴𝐴𝑤𝑤 (default value, 𝐴𝐴 𝐴𝐴𝑤𝑤 = 0.1 × 𝐴𝐴𝑋𝑋 )
2.  Set the maximum number of modes (default, 𝐴𝐴 𝐴𝐴 = 4 )
3.  Set the number of random samples (default, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1000 )
4.  Generate the noisy series 𝐴𝐴 �̃�𝑋(𝑗𝑗), 𝑗𝑗 = 1, . . . , 𝑁𝑁

5.  Generate the extended series 𝐴𝐴 �̃�𝑋𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗), 𝑗𝑗 = 1, . . . , 3𝑁𝑁

6.  EMD the series 𝐴𝐴 �̃�𝑋𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗)

7.  Store the IMFs and the residual over the original range of the signal, 
𝐴𝐴 𝐴𝐴 = 𝑁𝑁 + 1, . . . , 2𝑁𝑁

8.  Repeat steps 4 to 7 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 times
9.  Compute the final IMFs and residual by considering the average over the 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 of the corresponding functions calculated in step 7.
10.  Compute the power density function (PDF) of the four IMF (we use the tool 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 in the Matlab distribution 2020b).
11.  Compute the frequency peak of each IMF and related uncertainty
12.  Compute the trend according to Equation 3.

It should be stressed that the above procedure has been finalized, and the sensitivity of the procedure to the vari-
ous parameters checked by trial and error, simulations, and applications to the time series at hand.

3. Results and Discussion: OCS Measurements at Sites in the NOAA Network for the 
Year Range 2000–2020
3.1. Exemplifying EMD Through the Application to the MLO Station

To explain how the EMD decomposition is applied and used in this study, we show its application to the MLO 
series (monthly averages from March 2000 to December 2020 (𝐴𝐴 𝐴𝐴 = 250months )). The Mauna Loa site has the 
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longest OCS record, among the 14 NOAA stations considered here, with almost no data missing. The MLO 
station is an important research facility that has continuously monitored and collected data related to atmospheric 
change since the 1950s. The choice of a single station makes it easier to show how EMD works. However, the 
complete EMD analysis is available in the supplemental materials for all stations (e.g., see Figures S4–S31 in 
Supporting Information S1).

The decomposition consists of four modes and a residual and is shown in Figure 3, and it is possible to see that 
the higher mode numbers are associated with lower frequency variability.

As expected, the first IMF extracts the high oscillatory component of the noise in monthly means, which 
includes measurement error but is comprised mostly of real atmospheric variability within each month. In 
effect, the maximum amplitude of IMF1 is consistent with the atmospheric variability derived directly from 
the measurements, or 𝐴𝐴 𝜎𝜎𝑑𝑑𝑑𝑑 (see Table 1). For MLO we have a value of 8.8 ppt for 𝐴𝐴 𝜎𝜎𝑑𝑑𝑑𝑑 . The second component 
is an almost perfect harmonic of the constant period, although the amplitude can change with time. To better 
understand the relevant frequencies in the third and fourth modes, the PDFs of the four IMFs in Figure 3 are 
shown in Figure 4.

From Figure 4, we see that the first IMF has a flat spectrum, as expected for white noise, and its spectral density 
is two orders of magnitude lower than the sharp power of the annual cycle (there is a ratio of 100:1 in the y-axis 
scale of IMF2 vs. IMF1). Compared with Figure 3, it is possible to see that the EMD methodology can filter out 
the random component in the data arising from measurement imprecision and atmospheric variability.

The second IMF (shortened to IMF2) extracted from the MLO record yields a frequency peak almost exactly at 
𝐴𝐴 1∕12 ≅ 0.0833 in units of 1/month. IMF2 has the most prominent spectral density; in fact, from Figure 3, we see 

that the mode is close to a pure harmonic with a period equal to 12 months. This aspect will be better analyzed 
and discussed in Section 3.2.

The third IMF (shortened to IMF3) is close to 2 years, although its uncertainty is as large as ∼6 months, and its 
spectral density is 1–2 orders of magnitude lower than that of the annual cycle. However, although of less inten-
sity, the IMF3 power maximizes at a value that is in good agreement with the QBO (Quasi-Biennial Oscillation) 
mean cycle, which has a periodicity of 28–29 months, or ∼0.4 per year, for example, see Ray et al. (2020). The 
third mode and its possible relationship with QBO will be further addressed in Section 3.3.

Figure 3. Exemplifying the EMD analysis applied to MLO monthly mean mole fractions measured for OCS (in ppt). Top to 
bottom, signal, IMFs and residual.
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The fourth mode (shortened to IMF4) is more peaked than the third. It has a larger density but corresponds to a 
period close to 10 years. Therefore, this mode is moved to the trend or long-term behavior shown in Figure 5. 
The role of the fourth mode and trend will be further discussed in Section 3.4. Here we expand and discuss the 
advantage of the EMD trend and its definition. According to Equation 3, the EMD trend, 𝐴𝐴 𝐴𝐴  is prescribed to show 
time scales larger than those corresponding to the threshold frequency, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 = 3∕𝑁𝑁 , which for the MLO station 
corresponds to ∼7 years. From Figure 5 we see that on time scales larger than 7 years, the decline of the OCS 
in recent years is clearly evident. Again in Figure 5, the EMD trend is compared with the other two smoothing, 

Figure 5. OCS monthly averages (2000–2020) for the MLO station and trend analysis according to EMD, lowess and moving 
average filters (e.g., see Equation 3 and the text in the paper).

Figure 4. MLO station. Power density functions of the four IMF corresponding to the EMD decomposition of the MLO 
monthly time series shown on a range of vertical scales; (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4. The figure also shows 
the peak frequency of IMF2-4. The frequency uncertainty shown in the figure is the half-width at half-maximum of the 
corresponding spectral line.
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non-parametric and nonlinear, algorithms. These are the lowess, 𝐴𝐴 𝐴𝐴𝑙𝑙 (an acronym of locally weighted scatter plot 
smoothing, e.g., Cleveland & Devlin, 1988) and the moving average, 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚 . They are both prescribed with a span 
of 𝐴𝐴 𝐴𝐴∕3 to properly compare with the time scales designed for the EMD trend. The lowess smoothing is based 
on a local least squares fitting and generalizes the smoothing average method, which is also shown in Figure 5. 
It is seen that the moving average filter shows a high-frequency ringing close to the boundaries of the signal, 
where it tends to collapse on the data points. In contrast, the lowess, 𝐴𝐴 𝐴𝐴𝑙𝑙 is much more consistent at the boundaries, 
although it provides a smoother version than the EMD, 𝐴𝐴 𝐴𝐴  . Nevertheless, the comparison exemplifies how EMD 
yields a methodology to determine and control the characteristic scales we want to include in the reconstruction 
of the signal.

Before closing this section, to further exemplify the advantage of EMD, we also note that a conventional Fourier 
analysis of the signal does not detect all of the modes identified for OCS by the EMD decomposition. Figure 6 
shows the PDF of the MLO time series, whose EMD decomposition has been exemplified through Figures 3 
and 4. It is seen that the Fourier analysis is capable of extracting the annual cycle. In contrast, the remaining 
modes, which EMD identifies in Figure 3, are lost in a broad low-pass spectrum with a zero-frequency peak. 
Figure  6 also shows, for comparison, the PDF of the second IMF, which extracts the annual cycle from the 
original signal. It can be seen that the PDF of the second IMF exactly matches the peak of the annual cycle in 
the PDF signal, which allows us to stress the property of EMD to extract the relevant modes from the signal. 
An analysis based solely on the PDF of the signal would conclude the presence of a single dominant mode and 
a low-pass component with a peak at zero frequency, which parallels the EMD residue and IMF4. In contrast, 
EMD can correctly identify the annual cycle but can also reveal a cyclic mode in the lower frequency range with 
a characteristic time of ∼10 years (IMF4).

3.2. The EMD Analysis of the Annual Cycle at All Sites in the NOAA Network

EMD decomposition allows us to separate the various frequency modes from the rest of the signal, as, for exam-
ple, exemplified in Figure 3 for the case of the MLO station. The supplemental material for brevity shows the 
second mode or annual cycle and the rest of the EMD decomposition for the 14 NOAA stations.

Here we will summarize the analysis of the annual cycle based on the fit with a pure harmonic wave of period 𝐴𝐴 𝐴𝐴  ,

𝐴𝐴 sin((2𝜋𝜋(𝑡𝑡 − 𝑑𝑑))∕𝑇𝑇 ) (4)

with the time 𝐴𝐴 𝐴𝐴  in units of months and 𝐴𝐴 𝐴𝐴 = 12 months; the amplitude and delay 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 are fit parameters. To 
phase the harmonic with the calendar year, the fit considers the data from January 2001, (𝐴𝐴 𝐴𝐴 = 1) up to Decem-

Figure 6. The power Density Function of the whole signal derived from a Fourier analysis of the MLO OCS monthly mean 
mole fraction time series over the past 20 years (“Signal PDF”), and the second IMF extracted through the EMD analysis.
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ber 2020 (𝐴𝐴 𝐴𝐴 = 240) . A Least Squares fitting procedure of the model of Equation 4 to the IMF2 data (e.g., see 
Figure 3) yields for the MLO station 𝐴𝐴 𝐴𝐴 = 17.27 ppt, with a 95% confidence interval of [16.51, 18.03] ppt 
and, 𝐴𝐴 𝐴𝐴 = 1.93 months, with a 95% confidence interval of [1.85, 2.00] months. The goodness of the fit has 
been assessed through the correlation coefficient, and we found 𝐴𝐴 𝐴𝐴

2 = 0.90 . Because of its definition, the pure 
harmonic of Equation 4 has its peak (maximum) in March and its trough (minimum) in September. There-
fore, the delay 𝐴𝐴 𝐴𝐴 ∼ 2 months says that the peak value is attained in May, whereas the trough is in November. 
Furthermore, on average, the annual cycle's peak-to-peak amplitude is equal to ∼34 ppt in the MLO meas-
urement record.

The analysis for the other stations is summarized in Table 2. The goodness of the fit also allows us to check for 
possible inter-annual variability that changes the annual cycle's year-to-year amplitude. In this respect, we see 
from Table 2 that the correlation coefficient of the fit with Equation 4 is, for most sites, larger than 0.90, apart 
from SMO, for which the value is 0.71. SMO is notably different likely because of its proximity to the equator 
and the large interannual variability in the position of convergence zones, particularly in December–March, 
that affects mole fraction measurements at SMO for many gases having significant hemispheric mole fraction 
differences. We also quote that in the period Dec-Mar, we have the peak of OCS formation from DMS oxidation 
(Jernigan et al., 2022), which could explain why SMO (a tropical oceanic station) is so peculiar.

For the other 13 stations, a pure harmonic wave accounts for most of the dynamic of the annual cycle. As 
expected, the cycle's amplitude has a robust latitudinal gradient because continents and anthropogenic sources are 
concentrated in the Northern Hemisphere. However, there is also a significant difference in the cycle phase. In the 
southern hemisphere, the phase 𝐴𝐴 𝐴𝐴 is negative, and the peak of OCS is around February. This behavior agrees with 
the dominance of the ocean for setting the phasing of OCS mole fraction in the southern hemisphere (Montzka 
et al., 2007) and current OCS ocean emission inventory by Lennartz et al. (2021), which shows that the globally 
integrated monthly fluxes for the austral hemisphere are highest in summer and lowest in winter. In the Northern 
Hemisphere, in most cases, the delay is positive and close to 𝐴𝐴 𝐴𝐴 = 1 month, which positions the OCS peak in April. 
For the two Eastern American stations, LEF and HFM, 𝐴𝐴 𝐴𝐴 ≈ 0, which is likely the effect of their position in the 
area of natural forest sinks. Overall, the latitudinal dependencies for amplitude and phase agree with the findings 
of other studies (e.g., Hannigan et al., 2022).

Table 2 
Amplitude and Delay of the Annual Cycle Fitted With a Pure Harmonic Wave With a Period T = 12 Months (See Equation 4)

Station Code Lat (°N) Lon (°W) Elevation (masl)

Annual cycle amplitude and delay

Amplitude, 𝐴𝐴 𝐴𝐴 (ppt) Delay, 𝐴𝐴 𝐴𝐴 (months) Corr. Coef. 𝐴𝐴 𝐴𝐴
2

Alert, Nunavut, Canada ALT 82.4508 62.5072 185 43.54 [42.36, 44.71] 1.00 [0.95, 1.05] 0.96

Point Barrow, USA BRW 71.3230 156.6114 11 45.04 [43.92, 46.15] 0.93 [0.88,0.96] 0.96

Cape Grim, Tasmania CGO −40.683 144.6900 94 16.32 [15.93, 16.71] −0.76 [−0.81, −0.72] 0.97

Harvard Forest, USA HFM 42.5378 72.1714 340 54.79 [53.72, 56.26] −0.27 [−0.33, −0.22] 0.96

Cape Kumukahi, USA KUM 19.7371 155.0116 0.30 20.77 [19.79, 21.74] 1.78 [1.69, 1.87] 0.88

Park Falls, USA LEF 45.9451 90.2732 472 46.44 [44.73, 48.15] 0.13 [0.06, 0.20] 0.92

Mace Head, Ireland MHD 53.3260 9.899 5.00 32.58 [30.97, 34.20] 0.94 [0.85, 1.04] 0.88

Mauna Loa, USA MLO 19.5362 155.5763 3,397 17.27 [16.51, 18.03] 1.92 [1.85, 2.00] 0.90

Niwot Ridge, USA NWR 40.0531 105.5864 3,523 20.24 [19.4, 21.08] 1.45 [1.37, 1.53] 0.90

Palmer Station, Antarctica PSA −64.7742 64.0527 10 18.82 [18.11, 1952] −0.87 [−0.94, −0.80] 0.92

Tutuila, American Samoa SMO −14.2474 170.5644 42 8.53 [7.82, 9.23] −0.33 [−0.50, −0.18] 0.71

South Pole, Antarctica SPO −89.98 24.8 2810 [12.59] [11.94,13.24] −0.34 [−0.44, −0.24] 0.86

Summit, Greenland SUM 72.5962 38.422 3,209 31.18 [30.21,32.15] 0.83 [0.77, 0.96] 0.96

Trinidad Head, USA THD 41.0541 124.151 107 43.37 [41.37, 45.36] 1.91 [1.82, 2.00] 0.90

Note. The pure harmonic has a max and min in March and September, respectively. The values in square brackets give the 95% confidence interval, whereas 𝐴𝐴 𝐴𝐴
2 is the 

correlation coefficient.
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3.3. Oscillatory Modes at All Sites in the NOAA Network and the Role of the Third EMD Mode

The previous sections have mainly focused on assessing the annual cycle's prominent role due to the summer 
OCS drawdown by terrestrial vegetation. However, EMD analysis has also revealed other frequency modes lower 
than the annual cycle. In principle, this rich variability could be associated with climate characteristic scales such 
as the QBO (∼2 years), El-Nino (∼2 − 7 years), or simply interannual variability linked to biogenic activities. 
The in-depth analysis of these modes is not the present study's focus. However, we highlight them here to benefit 
the reader and to incite further studies. The peak frequencies of the IMF 2–4 are summarized in Figure 7 as a 
function of the station. From Figure 7, we see a great consistency among the various stations. As already said, the 
IMF2 represents the annual cycle, with frequency 𝐴𝐴 𝐴𝐴𝑜𝑜 =

1

12
= 0.0833 month −1, and we see that IMF2 at all stations 

peaked at this frequency. In Figure 7, we have also drawn the sub-tone frequency, 𝐴𝐴 𝐴𝐴𝑜𝑜∕2 , 𝐴𝐴 𝐴𝐴𝑜𝑜∕4 and 𝐴𝐴 𝐴𝐴𝑜𝑜∕10 to help 
to identify where the observed peak frequencies accumulate.

It is seen that the IMF4 tends to accumulate at the frequency 𝐴𝐴 𝐴𝐴𝑜𝑜∕10 , which is lower than the threshold frequency, 
𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 . In effect, the IMF4 has been moved to the trend 𝐴𝐴 𝐴𝐴  , according to its definition of Equation 3.

Much more interesting is the behavior of the IMF3, which shows good consistency with the QBO mean cycle 
(28 months timescales, e.g., Baldwin et al., 2001). The quasi-biennial oscillation (QBO) is a quasi-periodic oscil-
lation of the equatorial zonal wind between easterlies and westerlies in the tropical stratosphere. According to Ray 
et al. (2020), for trace gases with atmospheric lifetimes longer than a month (and OCS is a trace gas with a life-
time of 1.5–3 years), QBO can be the primary mode of variability in the stratosphere-to-troposphere exchange on 
1- to 5-year timescales for certain gases having stratospheric losses, such as the chlorofluorocarbons and nitrous 
oxide. The QBO influence on tropospheric abundance arises from the modulation of the stratosphere to tropo-
sphere mass flux. The modulation can appear in surface measurements and drives the interannual variability of 
some trace gases that have strong mole fraction gradients across the tropopause. The effect has been demonstrated 
in chemistry-climate model simulations of chlorofluorocarbon-11, chlorofluorocarbon-12, and nitrous oxide (see 
also Ruiz et al., 2021). Our analysis could be the first experimental evidence that a mode of variability compatible 
with QBO is found in the OCS monthly means.

The standard approach that defines the QBO anomaly uses the equatorial zonal winds at a single pressure level 
(normally 50 hPa) and its analysis shows a period that varies from 22 to 34 months with an average of slightly 
more than 28 months. We stress that the third IMF also shows a varying period, which can be easily seen by 
comparing, for example, the third IMF to the second one in Figure 3. The same comparison can be performed for 
all stations using the EMD decomposition provided in the supplemental material. An analysis of Figure 3 shows 

Figure 7. Peak frequencies of the IMF from 2 to 4 as a function of the station. The figure also shows the subtone frequencies 
of the annual cycle 𝐴𝐴 𝐴𝐴𝑜𝑜, that is 𝐴𝐴 𝐴𝐴𝑜𝑜∕2 , 𝐴𝐴 𝐴𝐴𝑜𝑜∕4 , and 𝐴𝐴 𝐴𝐴𝑜𝑜∕10 to identify where the observed peak frequencies accumulate. The gray 
area gives the range of the QBO mean cycle, which has a periodicity of 28–29 months.
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that the distance between two consecutive peaks varies from 13 to 27 months, with an average of 22 months and 
a standard deviation of about 4.5 months.

A better agreement with the QBO average frequency is seen with the other two (sea level) tropical stations 
of KUM and SMO. Figure 7 shows that the QBO average frequency perfectly agrees with those of these two 
stations. The EMD decomposition allows us to filter out from the original OCS time series all components or 
modes with variability shorter than ∼22 months and larger than ∼34 months and yields the third IMF, which 
quantifies the OCS variability supposedly associated with QBO. For example, from Figure 3, which refers to 
the MLO station, we see that this component has a peak-to-peak amplitude of ∼20 ppt. Considering the data 
in Figure 3 again, we estimate for the third IMF a variance of 17.17 ppt 2, which can be compared to the total 
variance of the OCS times series of 320.41 ppt 2. An analysis of how the frequency changes with time can also be 
addressed using the Huang-Hilbert transform and an example is provided in the supplemental material (e.g., see 
Figures S32 and S33 in Supporting Information S1) The third IMF quantifies the QBO potential effect related to 
its influence on atmospheric mixing processes (Ray et al., 2020). However, we stress that IMF3 variability and 
frequency mode could also be connected to the interplay of biogenic natural sources and sinks, as evidenced in 
the recent works by Lennartz et al. (2021) and Vesala et al. (2022). Further work is needed to confirm this link 
to the QBO, for example, also considering OCS in the stratosphere and an in-depth correlation study with the 
QBO anomaly.

3.4. The Long-Term EMD Component, 𝑨𝑨 𝑨𝑨 at All Sites in the NOAA Network

To have a more general and possibly global picture, Figure 8 shows the EMD trend, 𝐴𝐴 𝐴𝐴𝐴 for the North-Hemisphere 
stations north of 30°N of the NOAA network. All Northern stations consistently show a decreasing atmospheric 
OCS mole fraction from 2015 to 2020.

The long-term component is always relevant in terms of explained variance in these data at all sites, as shown 
in Table 2. In terms of standard deviation, the trend 𝐴𝐴 𝐴𝐴  explains more than ∼15% of the variability of the whole 
signal, 𝐴𝐴 𝐴𝐴(𝑗𝑗), 𝑗𝑗 = 1, . . . , 𝑁𝑁 . We stress that the long-term components' variability in Figure 8 reflects a good 
general agreement with original data. The overall mean is not distorted and long-term local features at the 
scale of the threshold frequency are well reproduced. This is exemplified in Figure 9 for the case of the NWR 
station. In Figure 9, we also show a comparison with the lowess trend, 𝐴𝐴 𝐴𝐴𝑙𝑙 , which as for the case of the MLO 
station smooths the features at the scale of the threshold frequency, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 = 3∕𝑁𝑁 . For the sake of brevity, the 
comparison between 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴𝑙𝑙 is not shown in the paper for all stations. Nevertheless, the supplemental material 
has provided this comparison for the interested reader. Here we stress that the lowess smoothing agrees with 
EMD in detecting a decline in OCS atmospheric column amount since 2015–2016. However, to mark the 
difference and advantage of EMD upon the lowess trend, we should consider that the correct cut-off for the 
lowess trend we show has been prescribed as a result of the frequency modes determined through our EMD 
analysis.

Figure 8. EMD-derived trend determination, 𝐴𝐴 𝐴𝐴  component (Equation 3), for OCS measured at stations in the Northern 
Hemisphere at latitudes greater than 30°N.
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The results for the stations between 30°N and 30°S are shown in Figure 10. Consistent with what has been shown 
for the Northern Hemisphere north of 30°N, we see a decreasing trend for the three stations from 2015 to 2016 
through 2020.

Finally, Figure 11 shows the results for the three stations in the Southern Hemisphere. Also in this case, we have 
that the three stations show a negative trend since 2015–2016, which is strongly consistent with the findings we 
have shown for the other NOAA stations after these years.

An essential aspect of the analysis we have shown with the 20-year long time series is the presence of a relatively 
large variance of the OCS signal at frequencies below the threshold 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 =

3

𝑁𝑁
 which may reflect scales of the 

general atmospheric circulation, the climate forcing or even the long-term changes in the magnitude of overall or 
total OCS emissions (e.g., Zumkehr et al., 2018).

The low-frequency variability is shown in Table  3 in terms of the standard deviation, that is, the variability 
strength, of the EMD trend 𝐴𝐴 𝐴𝐴  (computed according to Equation  3) and the original monthly observations, 

𝐴𝐴 𝐴𝐴(𝑗𝑗), 𝑗𝑗 = 1, . . . , 𝑁𝑁 .

From Table 3, we see that the trend or long-term variability is between ∼15%–40% of the total power of the 
signal. Therefore, this component is not negligible concerning the yearly cycle. In effect, from Figures 8–11, we 

Figure 9. OCS monthly averages (2000–2020) for the NWR station and trend analysis according to EMD (Equation 3) and 
the non-parametric lowess approach (see text in the paper).

Figure 10. EMD-derived trend determination, 𝐴𝐴 𝐴𝐴  component (Equation 3) for the NOAA stations between 30°N and 30°S.
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see that the variability has consistently increased in the last few years, which leads us to conclude that the OCS 
mole fraction has entered a worldwide decreasing phase. These findings suggest a recent broad-scale atmospheric 
decline captured by measurements at all NOAA sites.

To sum up, we can say that the 20-year OCS record at all sites shows a consistent low-frequency component, 
which yields a complex behavior with a generally increasing trend up to 2015, a temporary decrease during 
2009, and finally, a decline in the last 6–7 years. As Hannigan et al.  (2022) suggested, these common global 
trend features may reflect an imbalance in total OCS sources and losses. In this respect, Hannigan et al. (2022) 
have shown that the lower troposphere variability of OCS has a statistically significant correlation (correlation 
coefficient ranging from 0.46 to 0.77) with the revised anthropogenic emissions budget of Zumkehr et al. (2018) 

Figure 11. Trend analysis for OCS measured at sites in the Southern Hemisphere. We note that for PSA, the trend seems 
to have reversed from a decreasing one since about 2010. However, it is likely that the trend at PSA is influenced by 
contamination in sampling equipment used at that site in the first half of the record (2000–2010). The sample-to-sample 
variability in the PSA record is much noisier prior to 2010 than after it, consistent with that conclusion.

Table 3 
Variability (in Terms of Standard Deviation) of the EMD Trend 𝐴𝐴 𝐴𝐴  (Equation 3) and the Original Signal, 𝐴𝐴 𝐴𝐴(𝑗𝑗), 𝑗𝑗 = 1, . . . , 𝑁𝑁 , for the 20 Year-Long Time Series 
Analyzed in This Paper

Station Code Lat (°N) Lon (°W) Elevation (masl)

Variability (ppt)

Trend, 𝐴𝐴 𝐴𝐴 Signal, 𝐴𝐴 𝐴𝐴(𝑗𝑗) % ratio trend/signal

Alert, Nunavut, Canada ALT 82.4508 62.5072 185 5.38 39.64 13.6

Point Barrow, USA BRW 71.3230 156.6114 11 6.34 40.87 15.5

Cape Grim, Tasmania CGO −40.683 144.6900 94 4.26 14.76 28.8

Harvard Forest, USA HFM 42.5378 72.1714 340 8.34 49.53 16.8

Cape Kumukahi, USA KUM 19.7371 155.0116 0.30 6.10 22.48 27.1

Park Falls, USA LEF 45.9451 90.2732 472 9.62 44.77 21.4

Mace Head, Ireland MHD 53.3260 9.899 5.00 7.00 33.35 20.9

Mauna Loa, USA MLO 19.5362 155.5763 3,397 6.98 17.90 38.9

Niwot Ridge, USA NWR 40.0531 105.5864 3,523 7.65 19.91 38.4

Palmer Station, Antarctica PSA −64.7742 64.0527 10 8.52 20.03 42.5

Tutuila, American Samoa SMO −14.2474 170.5644 42 5.80 12.85 45.1

South Pole, Antarctica SPO −89.98 24.8 2810 2.65 14.69 6.40

Summit, Greenland SUM 72.5962 38.422 3,209 8.24 34.19 24.1

Trinidad Head, USA THD 41.0541 124.151 107 9.95 41.40 24.0
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between 1986 and 2012. Also, they conclude that a slowing of anthropogenic emissions is likely the cause of the 
actual worldwide phase of decline.

It is also interesting to note that the best estimates of natural sources and sinks of OCS in total would suggest 
slight increases in atmospheric mole fraction in recent years in the absence of the anthropogenic emission trends 
discussed above (e.g., Lennartz et  al.,  2021; Vesala et  al.,  2022). For example, based on simulation studies, 
Lennartz et al. (2021) show that decadal oceanic emissions of OCS are mainly driven (correlation coefficient 
0.94) by chromophoric dissolved organic matter (CDOM) and skin temperature (correlation coefficient 0.41). 
Equivalent results are also obtained for CS2, whose atmospheric oxidation (e.g., Chin & Davis, 1993), represents 
an additional source of OCS. Although the ocean emissions have seasonal and interannual variability, along with 
spatial patterns with a minimum in the tropics (because of the higher skin temperature), the global trend over the 
period 2000–2019 in OCS emission is believed to be slightly increasing (Lennartz et al., 2021). On the same line 
is the recent study by Hattori et al., 2020. By constraining the OCS budget with sulfur isotopes, they show that 
anthropogenic sources, not merely oceanic sources, can account for much of the missing source of atmospheric 
OCS.

Regarding sinks, Vesala et  al.  (2022) finds that long-term fluxes of OCS, their seasonality, and interannual 
variability in boreal forests are strongly correlated with meteorological conditions (correlation ranging between 
0.77 and 0.88). Because of climate change, the summer season has largely drifted toward long-lasting droughts. 
Droughts have significantly reduced ecosystem-scale OCS uptake. In this respect, the Copernicus Climate 
Change Service (C3S) data set (e.g., see https://climate.copernicus.eu/esotc/2021/globe-in-2021 (accessed on 15 
August 2022)) indicates that the last 7 years have been the warmest on record.

All of this evidence related to long-term global fluxes of OCS lead us to conclude that a slowing in anthropogenic 
sources can explain the worldwide decline phase, as Hannigan et al. (2022) first suggested.

4. Conclusions
This study analyzed the monthly average time series of OCS using data from the globally distributed NOAA/
GML network stations between 2000 and 2020. The analysis has been performed by using the EMD, which 
decomposes a given time series in its primary cycles plus a trend. The method is non-parametric, and there is no 
need to specify a trend model as generally done with other approaches.

However, EMD still has some open issues regarding its formal characterization when operating on a broadband 
signal, such as white noise (e.g., Wu & Huang, 2010). In our analysis, this issue has been minimized by resorting 
to decomposition, which, while non-exact, still provides an approximation of the given signal (Wang et al., 2010). 
The EMD method we use to calculate the decomposition has been implemented with the two basic stopping 
criteria recommended by Wang et al. (2010) to obtain physically meaningful results. The stopping rules include 
a Cauchy criterion (e.g., Wang et al., 2010), to stop the iteration from getting a given IMF, and an Energy ratio 
criterion (e.g., Wang et al., 2010), to stop the EMD decomposition. In this way, as stressed by Wang et al. (2010), 
the EMD implementation yields an approximation concerning the cubic spline basis but avoids resulting in IMFs 
that have no physical significance.

In addition, we remark that other problems could affect EMD performance in practice (Huang et al., 1998, 2003), 
especially in measurement noise. One limitation is the difficulty of carrying out a clean separation in IMFs when 
their local frequencies are too close (e.g., Stallone et al., 2020). In some cases, this separation could be improved 
by applying the so-called EEMD (Wu & Huang, 2009), an approach in this paper that adds random noise to the 
observations.

We constrain EMD by specifying the maximum number of modes and a frequency threshold to separate lower 
frequencies from the annual cycle. In effect, the stopping criteria (Wang et  al.,  2010) embedded in the most 
updated EMD software tool by Matlab (we used release 2020b in this study) do not provide a reliable strategy to 
separate the trend from pure modes. Therefore, we have shown that frequency thresholding and a suitable limita-
tion of modes are best practices for the successful use of EMD.

With this in mind, the decomposition in cyclic modes of the OCS series has shown the presence of low-frequency 
time scales of ∼10 years. Furthermore, the low-frequency component yields a long-range time evolution, indi-
cating a decline in OCS concentration in the atmosphere in the last 6–7 years. The reduction is seen in data 

https://climate.copernicus.eu/esotc/2021/globe-in-2021
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obtained from all stations examined in the present work, consistent with a current imbalance in total global 
OCS sources and losses (e.g., Hannigan et al., 2022). Moreover, we have shown that the OCS records exhibit 
a cyclic mode between 2 and 4 years, which may be linked to the Quasi Biennal Oscillation (QBO). However, 
this variability could also be connected to the interplay of biogenic natural sources and sinks, as stated in the 
recent analysis by Lennartz et al. (2021) and Vesala et al. (2022). An important aspect of the mode between 2 
and 4 years is the frequency changing with time. This characteristic has been assessed by analyzing consecutive 
peaks of the related IMF (the third one) and using the Huang-Hilbert transform. We stress that the quasi-periodic 
processes are peculiar to the dynamics of the atmosphere and its coupling with land and ocean. Unlike EMD, 
these kinds of processes cannot be analyzed with the usual Fourier analysis, which once again stresses the 
advantage of EMD.

In addition, a decreasing trend of OCS mole fraction has been observed in the last 6–7 years at all NOAA/GML 
measurement sites, which could also be related to the integrated effect of slowing anthropogenic emissions, as 
suggested by Hannigan et al. (2022). As indicated by Lennartz et al. (2021) and Vesala et al. (2022), the interplay 
of sources and sinks is also influenced by climate change. As a result, the atmospheric OCS concentration will 
likely keep changing globally. Because the OCS mole fraction is involved in forming stratospheric sulfate aerosol, 
continuous observation of the OCS mole fraction is useful for characterizing changes in this stratospheric layer.

Moreover, an analysis using EMD led to the discovery of new OCS variations. EMD may apply to other atmos-
pheric gases, such as CO2 as well. An essential aspect of EMD is the possibility to insulate, for example, the 
seasonal cycle from other variability modes, which could allow us to compare and correlate the process from 
different gases, for example, OCS and CO2.

Finally, no matter the origin of the present OCS mole fraction decline, the carbonyl sulfide atmospheric budget is 
currently unbalanced. Recent works by Hattori et al. (2020), Lennartz et al. (2021), and Vesala et al. (2022) have 
suggested refining sources and sinks magnitude, which could lead to a better understanding of the atmospheric 
OCS budget. However, these new sources and sinks would increase the OCS trend, which is not the case based on 
actual observations. We think that further analysis of global transport coupled with emission-chemistry models 
could yield new insights in light of the most recent changes we have identified and assessed in this study. We 
have shown that the typical representation of OCS dynamics with a long-term trend plus a seasonal cycle is less 
helpful in identifying other modes of variability. These modes are likely related to atmospheric dynamics and 
variations in anthropogenic and natural OCS sources and sinks (e.g., Hannigan et al., 2022; Lennartz et al., 2021; 
Ray et al., 2020; Vesala et al., 2022).

Data Availability Statement
The OCS data used in the paper are freely available from the GML Global Monitoring Laboratory program that 
measure OCS at the website http://www.esrl.noaa.gov/gmd/hats/gases/OCS.html. (Global Monitoring Labora-
tory, 2022) Data - http://www.esrl.noaa.gov/gmd/hats/gases/OCS.html.
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